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We consider the problem of the impact of an absolutely rigid disk onto the surface 
of an ideal liquid of shallow depth. The solution is obtained by reducing the dual 

integral equations, which arise in the problem, to an infinite system of linear al- 

gebraic equations. Expressions are obtained for determining the impact pressures, 
the apparent additional mass, and the apparent additional moment of inertia. We 

derive a condition for a nonseparable impact. This problem was investigated in 

[2] for the case of a liquid of great depth. 

1. Statement of the problem, We take the origin of Cartesian (2, y, z) and 
cylindrical (r, 8, z) coordinate systems on the free surface of the liquid at the center of the 
disk with the z -axis directed normal to the free surface and pointing downwards into the liquid. 

In the case of a centered impact the potential of the velocities acquired by the liquid 

particles is given by 

‘p (r, 2) = r f (a) ““l,fz; 2, Jo (ar) a da (1.1) 
A 

Here h is the liquid depth, J, (ar) is the Bessel function of the first kind of order zero, 
and f (a) is obtained from the following dual integral equation: 

I ! (a) x2K (a) J,, (ar) ada = - U, r d a (1.2) 
0 
‘x 

\ f(u)J,,(ar)ada = 0, r>a 
;, 

K (a)= *) 

where I/ is the disk velocity and a is the disk radius. To obtain the velocity potential 

in the case of off-center impact it is necessary to add the following function (see [a]) 

to the potential cp (r, zj : 

$(r,z)=$U)(r,z) =&~F(a)I,(ar) ch~kl(~~z) ada (1.3) 

Here F (a) is a solution of a dual integral equation, which differs from Eq. (1.2) in that 
- U is replaced by ‘/s or2 + c, where o is the angular rate of rotation of the disk 
and c is an arbitrary constant. We assume that the x-axis passes through the point where 
the impact occurs. 

2. Solution of dual integral equation,, We consider the more general 
dual integral equation 

(2.1) 
m co 

s 
’ Q (a) K (a) J, (ar) a da = Jn (w), r d a s s Q (a> Ja Car) a da = 0, I‘ > a 

0 0 

628 
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K(a) = A$&= fi fi (I + 6) (I +fg (2.2) 
?I==0 n 

Here J, (5) is the Bessel function of the first kind of order n, it&, and iyn is a coun- 
table set of zeros and poles of the function K (a) lying in the upper halfplane. We as- 
sume that there are no multiple zeros and poles and that 6, # Ym (?z, 732 = 1, z,...). 
We assume also that 6, and yn increase monotonically in absolute value as n increases, 

assuring thereby the convergence of the infinite product (2.2) ; in addition, we assume 

that on an arbitrary regular system of contours C, (C, C c,,,) the following estimate 

is valid for n -+ 00 : 
K(a) = O( py,, P < 0 (2.3) 

Using the relation (2.2) and 

(2.4) 

the dual equation (2.1) can be reduced to the form [I] 

API (L,)q (r) = P, CL,) J, (al), r<a, 4 (r) = 0, r>a (2.5) 

4 (r) = [Q(a)I,(ar)ada (2.6) 

Here P, (L,) and P,:L ) ~ are differential operators with respect to r of infinite order. 
The solution of the differential equation from (2.5) for 4 (r) can be written in the form 

Cl1 05 
q(r) = K-l (8) J,(w) + 2 [CJ, (i&r) + DklV,, ($291, r \( a (2.7) 

k=l 

(N, (z) is the Bessel function of the second kind ; Ck and D k are constants). Consi- 
dering q (r) to be bounded for r --f 0, we set D k = 0 (k = I’, 2 . . .), Taking into 

account the inverse Hankel transformation and the second relation in (2.5), we have 

Q (a) = K-l (8) 1 J, (w) J, (ar) rdr + fj CI, 5 J, (i&r) J, (ar) r dr (2.8) 
0 k=l o 

We determine the constants Ck by having the solution (2.8) satisfy the dual equation 
(2.1). We can represent the meromorphic function K (CC), subject to the assumptions 
we have made for it, in the form of a sum of principal values: 

K (a) = i __-!E- ) 
v,=1 a2 f r$ 

b, = 2i7, {[K-l (iy,)]‘}_’ (2.9) 

We now substitute the relations (2.8) and (2.9) into the first of the relations (2.1). 
Taking into account the relations 
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and equating to zero the coefficients of the linearly independent functions J, (iy,r), 
we obtain an infinite algebraic system for determining the coefficients Ck (h =1, 2.. .) 
of the expansion (2.7) 

i ck. (6k2 - rzm)-l Ir,I, (&a) K9T-1 (r,o) + &Jn-1(Q) K, (T&)1 = (2.10) 
k=l 

(I, (x) and K, (x) are, respectively, the Bessel function of an imaginary argument 
and the MacDonald function), 

In [3] the system (2.10) was investigated by reducing it to a system of the second kind 

through an exact inversion of the principal singular part ; this was justified by the method 
of successive approximation for large 6h. and 1~~ (k, m = 1, 2 . . .I or for large a. 

We restrict ourselves to the principal term in the asymptotic solution of the system 

(2.10) for 6lL, Ym -+ 00, (/c, vz = 1, 2 . . .). For this purpose we introduce the new 

unknowns 
(2.11) 

and perform passageto thelimitfor 6 kr 7m -+ 00. We thus arrive at the infinite system 

We write the solution of this system in the form [3] 

i [J, (4 -t i-f,_, (EQ) I 
‘k = %+ (E) (tjk + iE) K,’ (- is,) 

i [J, (Ed - i-f,,_, i&Q)1 
f ti (&) (ij - iP) A- (2.13) 

_ h‘ ’ c ‘(-- k 

K(a) = K,(a) K_(a) 
Here K+ (a) and K_ (a) are functions regular in the upper and lower halfplanes, re- 

spectively. If the right side of the first relation of the dual equation (2.1) is r2k and 

if n = 0 in (2. l), then the solution of this dual equation is the function 

Q* (a) = yz LkQ (a), (2.14) 

where L,k denotes the k-fold real operator f JL with respect to the variable a. 

We now transform the first relation in (1.2) by applying to it the operator I,;’ 3 which 

is the operator inverse to LT. Assuming cp to be bounded for r=O, we have (setting 

a = 1) co 

s 
‘f(a)K(a)J,(ar)ada==U r<i (2.15) 
0 
co 

Similarly, in the case of the off-center impact the right side of the first relation has the 

form 
- w (1/32 I p4 + V4 cr2 + CJ 

Here cl and c2 are constants of integration. 
Based on the relations (2.8). (2.11). (2.13) and (2.14). we can now construct the prin- 
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cipal terms of the asymptotic solution of the transformed dual integral equations for 
6kt ytn -+ 00 (k, m = 1, z a..), and, since for the problem in question 

(2.16) 

we have, consequently, the result for h --f 0. 

3. Calculation of the impact pra88Ure, the rpparent additional 
mars and moment of inertia. For z - 0 we have 

V(r, 0) == “,z u I1/.Arl(r) -- clq @)I (3.1) 

Here Q (r’) is the Hankel transform (2,6) of the solution of Eq, (2.1) for n = 0, written 

in the form (2.7). Omitting the cumbersome derivation, we write the following result : 

‘1 (r) ItzO = h-l + jj Ckolo (6&r) (3.2) 
h-=1 

Here 
k-1 

B; = ck” (do + d,61,’ + 4Etc2) 

D,” = ‘/&kc (b. $ b&1 + b2@ -+- b3tG3 + 248,7 

cko = ky ck = 2i [K, (0) K+’ (- i6k)]-1Ko (6,) 

do = 1 + 2n-lh In 4 - 2/&2 + 2nw2h2 ln2 4 

dI = 2+4n_lhln4 

b. = 3/R + 3:2alh -I- h” @a,’ - 3a,?) + h3 (2a, - 12alaz + 12~1~) + 

h4 (- a, + Sala, + 6az3 - 36a,*u, -k 24q4) 

bl = 3/2 _t C;hal -+- h2 (12u12 - 6az) -j- h3 (4~;~ + 24~~ - 24u& 

bz = 6 + 12hu, + h2 (24u12 - 12uy) 

b3 = 12 + 24ha, 

a, = Tc-l In4, u2 = z-2 1112 4 + l/Q 

a3 = n-3 ln3 4 + ;rl-l In 4 + 12n%, 

a4 = C4 In4 4 + 23tw2 In2 4 + 483tm4Us + "ilj 

u~=l.202056~ 

It is easily seen that the series (3.2) diverge for r = ‘i. Therefore, imposing on ~1 and 
I# the condition of boundedness, we make it possible to determine the constants cl, c2 

and c. We find that 
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(3.3) 

On the basis of the relations (1.4), (3.1) - (3.3) we obtain the final expressions for the 

potential of the velocities (z - 0, r < 1) acquired by the liquid particles as the re- 

sult of the impact 

&J 
k 

== [k(n+2hln4)-C 2h3 K,,(&) 
k (2k)!! [(2k - i,!!]-1 ’ 

Here we have used the fact that 

n 
If,’ (.4. i&) = - 

(2k - 1)!! 

h l/it 2k(k- i)! 

The impact pressure p1 = - p (cp + 9). where p is the density of the liquid. Using 

the relations (3.4) and (3.5), we obtain expressions for calculating the impact pressure 
on the boundary of the liquid beneath the disk for small values of h. 

The total impact momentum P and the total moment M of the impact pressures 

acting on the disk are given by the relations 

- - 3 -j k-‘SkI1 (6,;) nh 
0 Ii=1 

The expressions (3.4) - (3.7) are valid for small values of /z. 
In Table 1 we present the dimensionless values of the impact pressure at the center 

of the disk and also the apparent additional mass and moment of inertia 

p” LZ - u-‘cp((), O), p* =( pU)-l p, Al* = - (Fo)-l M (3.8) 

for various values of h, calculated, respectively, from the equations (3.4), (3.6) and (3.7). 
For comparison we present in the columns 3, 5 and 7 of the table analogous results cal- 

culated on the basis of the results obtained in p], which are valid for /d k 1.1 with a 
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relative error to 6%. 

h P* 
-- 

i I 2 

::: 0.4985 

0:s ;*: 
0 .5303 
0.6019 0.5641 

K’ 
0:5 

0.7559 0.7930 
0.8518 

3 

0.6750 
0.6890 
0.7133 

T _- I 
- 

Table 1 

P * I M* 

1.408 1.365 0.2263 
1.‘!+48 1.420 0.2004 
1.465 1.461 0.1961 
1.488 1.541 0.1926 
1.518 0.1902 
1.561 0.1892 
1.624 0.1898 
1.7’0 0.1933 

5 6 7 

0.1780 
0.1780 
0.1774 
0.1756 

4. Conditfon for a non8eparable impact. The coordinate of the point 
of application of the momentum is given by 

lo-M/P (4.1) 

Separation of the disk from the liquid surface occurs if, at least in the neighborhood of 

the point J: = 1, y = 0 , the impact pressure becomes negative (we assume that o > 

0, U > 0), i.e. if 
(cp + $,) > 0 for z=o, 2-1, y=o (4.2) 

Taking relation (4.1) into account, we obtain from (4.2) the condition for nonseparation 
of the disk from the liquid surface at impact 

(4.3) 

Using the behavior of the functions K,(X), 1, (x), 1, (.r) and 1, (z) for large va- 
lues of the argument, we find asymptotic values of the expressions (3.4) and (3.5) in the 

neighborhood of the point r = 1 , and of the expressions (3.1;) and (3.7) for h -+ 0. 
We have 

cp (r, 0) lrgl = (4.4) 

From the condition (4.3) on the basis of (4.4) we have p = l/s for h -+ 0. Finally, 

the condition for a nonseparable impact for h -+ U becomes 

1~1 6 o 16 

In the case h = co the condition for a nonseparable impact is given by 12s 1 < a / 5 

(see [Z]). Consequently, we can write the condition for a nonseparable impact onto an 
ideal liquid for arbitrary values of h in the form 
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a” (h) --+ a / 5 for h-too, a* (h) --+ UlCi for 12 -+ 0 

The author thanks V. M. Aleksandrov and V. A. Babeshko for their interest in this paper. 

REFERENCES 

1. Aleksandrov, V. M. and Chebakov, M. I., On a method of solving dual 
integral equations. PMM Vol. 37, NQ 6, 1973. 

2. Vorovich, I. I. and Iudovich, V. I., Impact of a circular disk on a liquid 
of finite depth. PMM Vol. 21, N’ 4, 1957. 

3. Babeshko, V. A,, On an effective method of solution of certain integral equa- 
tions of the theory of elasticity and mathematical physics. PMM Vol. 31, NQ 1, 

1967. 
Translated by J. F. H. 

UDC 532.526 : 532.135 

BOUNDARY LAYER IN THE PROBLEM OF LONGITUDINAL MOTION 

OF A CYLINDER IN A PBCOPLASTIC MEDIUM 

PMM Vol. 38, W 4, 1974, pp. 682-692 

P. P. MOSOLOV and V. P. MIASNIKOV 

(Moscow) 
(Received June 26. 1973) 

Construction of the boundary layer by the method of variation is used for investi- 
gating the principle of selecting the unique solution for a perfectly plastic me- 
dium by transition to it from a viscoplastic medium with the viscosity coefficient 

tending to zero. 

Let an infinitely long cylinder move along its axis in a viscoplastic medium at con- 
stant velocity. The velocity field of particles of a viscoplastic medium induced by the 
cylinder motion in a system of coordinates I, y, z (with the cylinder axis along the 2 - 
coordinate and its cross section o lying in sy-plane) is of the form u = (0, 0, u (5, 
y)). It was shown in [1] that u (2, y) minimizes functional 

where y and z0 are, respectively, the viscosity coefficient and the yield point of the 
medium and F is the longitudinal force moving the cylinder. The velocity of the cy- 
linder can be determined when force F is specified. It is u (5, y) over &e. If the cy- 
linder velocity is u,,, then u (2, y) minimizes functional 

I2 (20) = 1 [$I VWI” $- z, 1 VW I]dlu, WI30 = uo (1) 
Rz\o 

and the force necessary for producing such motion is determined by formula 

u,F=r,(u)$ 5 -!+I% 
R’/o 


